Secondary Extinction Corrections for Cylindrical Crystals*

By Walter C. Hamilton
Chemistry Department, Brookhaven National Laboratory, Upton, Long Island, New York, U.S.A.

(Received 13 August 1962)

Abstract

A computer program for calculating secondary extinction corrections for crystals of arbitrary polyhedral shape is briefly described, and tables of the corrections for equatorial reflections from cylindrical crystals are presented.

Introduction

The author in a previous publication (Hamilton, 1957, hereinafter referred to as I) has presented a formalism for calculating secondary extinction corrections for crystals of arbitrary shape. The corrections for cylindrical crystals were presented in I in the form of curves of I_{o} / I_{c} versus σD for three scattering angles. The calculation of the points on these curves was carried out on a desk computer using a rather large grid size for the required two-dimensional numerical integration.
In the intervening four years, a fast computer program for the IBM 704/7090 has been developed for the calculation of absorption and secondary extinction corrections for convex polyhedral crystals of arbitrary shape. The availability of this program, which makes possible a much more accurate integration, and the requests that the author has received for tables of values for cylindrical crystals, have made it seem desirable to calculate and publish such a table.

Method

The general method used is that of \mathbf{I}, and the same notation will be used. A rectangular rather than a Gaussian mosaic spread distribution function has been used; the adequacy of this model has been demonstrated by its successful use in a number of problems in these laboratories.
If the power in the incident beam with direction n is denoted by P_{O} and that in the diffracted beam with direction m by P_{H}, the following pair of differential equations apply:

$$
\begin{align*}
& \partial P_{\mathbf{H}} / \partial m=\gamma_{11} P_{\mathrm{H}}+\gamma_{12} P_{\mathrm{O}} \tag{la}\\
& \partial P_{\mathrm{O}} / \partial n=\gamma_{21} P_{\mathrm{o}}+\gamma_{22} P_{\mathrm{H}}, \tag{1b}
\end{align*}
$$

where the γ 's are constants defined below. Rather than using the difference equations I-4 as an approximation to equations (1), a modified Euler integration scheme is used instead. In one dimension, the Euler formula is

* Research performed under the auspices of the U.S. Atomic Energy Commission.

$$
\begin{equation*}
f(x+\Delta x)=f(x)+(\Delta x / 2)\left[f^{\prime}(x)+f^{\prime}(x+\Delta x)\right] \tag{2}
\end{equation*}
$$

In two dimensions, we construct a grid of points spanning the cross-section of the crystal. Let us denote the points $(m, n),(m, n+\Delta n),(m+\Delta m, n)$, and ($m+\Delta m, n+\Delta n$) by (00), (01), (10), and (11). If we choose $\Delta n=\Delta m$ and define $C_{i j}=\gamma_{i j} \Delta n / 2$, we may combine (2) and (1) to obtain

$$
\begin{gather*}
P_{\mathrm{H}}(11)=P_{\mathrm{H}}(01)+C_{11}\left[P_{\mathrm{H}}(01)+P_{\mathrm{H}}(11)\right] \\
+C_{12}\left[P_{\mathrm{O}}(01)+P_{\mathrm{O}}(11)\right] \\
P_{\mathrm{O}}(11)=P_{\mathrm{O}}(10)+C_{21}[\\
\left.P_{\mathrm{O}}(10)+P_{\mathrm{O}}(11)\right] \tag{3}\\
\\
+C_{22}\left[P_{\mathrm{H}}(10)+P_{\mathrm{H}}(11)\right] .
\end{gather*}
$$

Since the boundary conditions for equations (1) are
$P_{\mathrm{o}}=1^{*}$ at the incident boundary
and
$P_{\text {H }}=0$ at the boundary opposite to the direction of emergence of the diffracted beam, we must consider four types of boundary point in the application of the equations (3):

Type I: The point (11) is a boundary point with respect to both P_{H} and P_{o}. For this case

$$
\begin{align*}
& P_{\mathrm{o}}(11)=1 \\
& P_{\mathrm{H}}(11)=0 . \tag{4}
\end{align*}
$$

Type II: The point is a boundary point with respect to P_{H} but not to P_{o}. The equations become

$$
\begin{gather*}
P_{\mathrm{O}}(11)=\frac{C_{22}}{1-\bar{C}_{21}} P_{\mathrm{H}}(01)+\left(\frac{1+C_{21}}{1-C_{21}}\right) P_{\mathrm{O}}(10) \\
P_{\mathrm{H}}(11)=0 \tag{5}
\end{gather*}
$$

Type III: The point is a boundary point with respect to P_{o} but not to P_{H}. The equations become

$$
\begin{gather*}
P_{\mathrm{O}}(11)=1 \\
P_{\mathrm{H}}(11)=\frac{1+C_{11}}{1-C_{11}} P_{\mathrm{H}}(01)+\frac{C_{12}}{1-C_{11}}\left[1+P_{\mathrm{O}}(01)\right] \tag{6}
\end{gather*}
$$

Type IV: The point is not subject to the boundary conditions. The equations become on rearrangement

[^0]Table 1. Reciprocal pure secondary extinction corrections for cylinder: $1 / E_{s}=I_{c} / I_{o}$

$\sigma D \backslash^{2 \theta^{\circ}}$	0°	22.5°	45°	67.5°	90°	$112.5{ }^{\circ}$	$135{ }^{\circ}$	157.5°	180°
$0 \cdot 0$	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
$0 \cdot 2$	1.178	1-178	$1 \cdot 177$	$1 \cdot 176$	1-173	$1 \cdot 172$	$1 \cdot 170$	$1 \cdot 169$	1-169
$0 \cdot 4$	$1 \cdot 374$	1.372	$1 \cdot 368$	$1 \cdot 362$	1-354	$1 \cdot 346$	1-341	1.337	1-336
$0 \cdot 6$	1.585	1.581	1.571	1.556	1.538	1.523	1.511	1.504	1.501
$0 \cdot 8$	1-811	1.804	1.785	1.757	1.727	1.701	1-682	1.670	1.666
1.0	$2 \cdot 050$	2.038	$2 \cdot 007$	1.963	1.917	1.879	1.852	1.836	1.830
1.2	$2 \cdot 300$	$2 \cdot 283$	$2 \cdot 236$	2-173	2.108	2.057	2.022	2.001	1.993
1.4	$2 \cdot 561$	$2 \cdot 536$	$2 \cdot 471$	$2 \cdot 385$	$2 \cdot 301$	$2 \cdot 236$	$2 \cdot 192$	$2 \cdot 165$	$2 \cdot 156$
1.6	$2 \cdot 830$	2.796	2.710	2.599	2.493	2.415	$2 \cdot 362$	$2 \cdot 330$	$2 \cdot 318$
1.8	3.106	$3 \cdot 062$	$2 \cdot 952$	2.814	$2 \cdot 686$	2.593	$2 \cdot 531$	$2 \cdot 493$	$2 \cdot 480$
2.0	3.389	$3 \cdot 333$	3.196	3.030	$2 \cdot 880$	$2 \cdot 772$	$2 \cdot 700$	$2 \cdot 657$	$2 \cdot 641$
$2 \cdot 2$	$3 \cdot 677$	$3 \cdot 608$	$3 \cdot 443$	$3 \cdot 247$	3.073	2.951	2.869	$2 \cdot 820$	$2 \cdot 802$
2.4	$3 \cdot 968$	$3 \cdot 886$	$3 \cdot 690$	$3 \cdot 463$	$3 \cdot 266$	3-129	3.038	$2 \cdot 983$	$2 \cdot 963$
$2 \cdot 6$	$4 \cdot 264$	$4 \cdot 167$	$3 \cdot 939$	$3 \cdot 680$	$3 \cdot 459$	$3 \cdot 308$	$3 \cdot 207$	3-146	3.123
$2 \cdot 8$	$4 \cdot 563$	$4 \cdot 449$	$4 \cdot 188$	3.897	$3 \cdot 653$	$3 \cdot 486$	$3 \cdot 376$	$3 \cdot 309$	3-284
$3 \cdot 0$	$4 \cdot 863$	4.733	$4 \cdot 437$	$4 \cdot 113$	3.846	$3 \cdot 664$	$3 \cdot 545$	$3 \cdot 471$	3.444
$4 \cdot 0$	$6 \cdot 393$	$6 \cdot 163$	$5 \cdot 684$	5.196	4.812	4.556	$4 \cdot 387$	$4 \cdot 283$	$4 \cdot 143$
6.0	$9 \cdot 490$	9.037	$8 \cdot 172$	$7 \cdot 358$	6.741	6.335	6.070	$5 \cdot 900$	$5 \cdot 832$
8.0	12.61	11.90	10.65	9.515	8.667	$8 \cdot 110$	7.752	7.516	$7 \cdot 416$
10.0	15.75	14.77	13.12	11.67	10.59	9.883	9.432	9.132	8.996
12.0	18.88	17.62	$15 \cdot 59$	13.82	12.51	11.65	$11 \cdot 11$	10.75	10.58
14.0	22.02	$20 \cdot 47$	18.06	15.97	14.43	13.42	12.79	12.37	$12 \cdot 15$
16.0	$25 \cdot 16$	$23 \cdot 32$	20.52	18.12	16.35	$15 \cdot 19$	14.46	13.98	13.73
18.0	28.30	$26 \cdot 17$	22.98	$20 \cdot 26$	18.27	16.95	16.14	15.60	$15 \cdot 30$
$20 \cdot 0$	31.44	29.01	25.44	22.41	$20 \cdot 18$	18.72	17.81	$17 \cdot 22$	16.88
22.0	34.58	31.86	27.89	24.55	$22 \cdot 10$	$20 \cdot 48$	19.48	18.84	18.45
24.0	37.71	34.70	$30 \cdot 35$	26.69	24.01	$22 \cdot 24$	$21 \cdot 15$	$20 \cdot 47$	20.03
26.0	$40 \cdot 86$	37.54	32.80	28.84	25.92	24.00	22.82	22.09	$21 \cdot 60$
28.0	$44 \cdot 00$	$40 \cdot 38$	35.25	$30 \cdot 98$	27.83	$25 \cdot 76$	$24 \cdot 49$	23.71	$23 \cdot 17$
$30 \cdot 0$	47.14	$43 \cdot 22$	37.70	$33 \cdot 12$	29.74	27.52	$26 \cdot 16$	$25 \cdot 33$	24.75
Limiting value	$\frac{1}{2} \pi \sigma D$	$1 \cdot 42 \sigma D$	$\mathrm{I} \cdot 23 \sigma D$	$1.07 \sigma D$	$0.96 \sigma D$	$0 \cdot 88 \sigma D$	$0 \cdot 84 \sigma D$	$0.79 \sigma D$	${ }_{4} \pi \sigma D$

$$
\begin{align*}
& P_{\mathrm{O}}(11)=(1 / K)\left[P_{\mathrm{H}}(01)\left(1+C_{11}\right) C_{22}+P_{\mathrm{o}}(01) C_{12} C_{22}\right. \\
& \left.\quad+P_{\mathrm{H}}(10) C_{22}\left(1-C_{11}\right)+P_{\mathrm{O}}(10)\left(1+C_{21}\right)\left(1-C_{11}\right)\right] \\
& P_{\mathrm{H}}(11)=(1 / K)\left[P_{\mathrm{H}}(01)\left(1+C_{11}\right)\left(1-C_{21}\right)\right. \\
& \quad+P_{\mathrm{O}}(01)\left(1-C_{21}\right) C_{12}+P_{\mathrm{H}}(10) C_{12} C_{22} \\
& \left.\quad+P_{\mathrm{O}}(10)\left(1+C_{21}\right) C_{12}\right] \tag{7}
\end{align*}
$$

with

$$
K=\left(1-C_{11}\right)\left(1-C_{21}\right)-C_{12} C_{22}
$$

If the linear absorption coefficient is denoted by μ and the reflectivity by σ (see \mathbf{I}), we have, for the case of non-zero extinction,

$$
\begin{align*}
& C_{11}=C_{21}=-(\mu+\sigma) \Delta n / 2 \\
& C_{12}=C_{22}=\sigma \Delta n / 2 \tag{8}
\end{align*}
$$

If extinction is considered to be negligible, and we are interested in calculating a pure absorption coefficient, we have

$$
\begin{align*}
C_{11}=C_{21} & =-\mu \Delta n / 2 \\
C_{12} & =\sigma \Delta n / 2 \\
C_{22} & =0 . \tag{9}
\end{align*}
$$

These equations are used in the program to integrate along lines of constant n, and the total diffracted power is integrated over the exit boundary:

$$
\begin{equation*}
P_{\mathrm{H}}(T)=\sum_{n=n_{\min }}^{n_{\max }} P_{\mathrm{H}}\left[m_{\max }(n)\right] . \tag{10}
\end{equation*}
$$

To obtain the absorption-extinction correction, $E_{s a}$ we divide $P_{H}(T)$ by the ideal value for an extinction and absorption free crystal, namely

$$
\begin{equation*}
A=\sigma \Delta n \sum_{n=n_{\min }}^{n_{\max }}\left[m_{\max }(n)-m_{\min }(n)\right] \tag{11}
\end{equation*}
$$

[In (10) and (11), n and m refer to the integral indices of the grid points.] Thus

$$
E_{s a} \equiv I_{o} / I_{c}=P_{\text {H }}(T) / A
$$

For the crystal of general shape, the program performs the integration over slices parallel to the $m n$ plane, sums $P_{\mathrm{H}}(T)$ and A for the various planes and then divides to obtain $E_{s a}$. For equatorial reflections from a crystal with axial symmetry, in particular a cylindrical crystal, only one slice is necessary.

Calculations for the table

The circular cross-section of the cylinder was approximated by a 30 -gon of the same area as a circle with diameter D. The grid size for the integration was taken to be $D / 120$, for $45^{\circ}<2 \theta<135^{\circ}$ and $D / 80$ for $2 \theta=22 \cdot 5^{\circ}$ and $157 \cdot 5^{\circ}$. The values for $2 \theta=0^{\circ}$ and 180° can be calculated by simpler methods than numerical integration. A series expansion was used to evaluate the integral in $\mathbf{I}-15$ for $2 \theta=0^{\circ}$ (equation $\mathbf{I}-18$ should have a 2 in front of the summation sign); the following formulae were used for $2 \theta=180^{\circ}$:

$$
\begin{aligned}
\begin{array}{l}
a=\sigma D<1
\end{array} & E_{s}=\frac{4}{\pi a}-\frac{2}{a^{2}} \\
& \quad+\frac{8}{\pi a^{2}\left(1-a^{2}\right)^{1 / 2}} \tan ^{-1}\left(\frac{1-a}{1+a}\right)^{1 / 2} \\
a=D=1, & E_{s}=\frac{8}{\pi}-2 \\
a=\sigma D>1 & , E_{s}=\frac{4}{\pi a}-\frac{2}{a^{2}} \\
& \quad+\frac{4}{\pi a^{2}\left(a^{2}-1\right)^{1 / 2}} \log \frac{(1+a)^{1 / 2}+(a-1)^{1 / 2}}{(1+a)^{1 / 2}-(a-1)^{1 / 2}}
\end{aligned}
$$

The results are accumulated in Table 1. The quantity tabulated is $1 / E_{s}$, i.e. I_{c} / I_{o}. To obtain an estimate of the accuracy of these numbers, calculations were made of a few pure absorption corrections, with the results compared in Table 2 with values from Vol. II of the International Tables for X-ray Crystallography (1959). For $\mu D=3$, the errors are no more than a few tenths of 1%. These increase to $2-3 \%$ at $\mu D=30$. This should be a tolerable error for any practical work where extinction or absorption is this severe.

Table 1 is extended to values of σD where the reflected intensity is becoming independent of the

Table 2. Comparison of calculated pure absorption corrections with those tabulated in the International Tables for X-ray Crystallography

μR	θ	Calc.	Table	Relative error
1.5	15	9.843	9.88	0.0037
	25	8.766	8.79	0.0027
	35	7.668	7.68	0.0015
	45	6.722	6.74	0.0027
	55	6.000	6.00	-
	65	5.453	5.45	0.0006
	75	5.083	5.08	0.0006
15.0	15	711.5	731	0.027
	25	321.3	313	0.027
	35	179.9	176	0.022
	45	117.6	115	0.023
	55	84.95	82.7	0.027
	65	65.86	64.8	0.016
	75	54.43	54.1	0.006

structure factor, and the limiting values of $1 / E_{s}$ are also included in the table. The limiting values for $2 \theta=0^{\circ}$ and $2 \theta=180^{\circ}$ are exact; the others were obtained by extrapolation.

References

Hamilton, W. C. (1957). Acta Cryst. 10, 629.
International Tables for X-ray Crystallography (1959).
Vol. II. Birmingham: The Kynoch Press.

Crystal Structure of $\left[\mathrm{BrMn}(\mathrm{CO})_{4}\right]_{2}$

By Lawrence F. Dahl and Cein-Hsuan Wei
Department of Chemistry, University of Wisconsin, Madison 6, Wisconsin, U.S.A.

(Received 18 September 1962)
A"three-dimensional structural analysis of $\left[\mathrm{BrMn}(\mathrm{CO})_{4}\right]_{2}$, a typical member of the group VII metal tetracarbonyl halides, has been carried out. Crystals of $\left[\mathrm{BrMn}(\mathrm{CO})_{4}\right]_{2}$ possess space group symmetry $P 2_{1} / c$ and contain four dimeric molecules in a monoclinic unit cell of dimensions

$$
a=9.57 \pm 0.01, b=11.79 \pm 0.02, c=12.91 \pm 0.02 \AA, \beta=109^{\circ} 30^{\prime} \pm 10^{\prime}
$$

Isotropic least-squares refinement of all twenty atoms has yielded final discrepancy factors of $R_{1}=10.0 \%$ and $R_{2}=10.9 \%$. The structure consists of discrete dimeric molecules formed by two octahedra joined at a common edge with bridging bromines equally shared between the manganese atoms. Within experimental error each molecular unit is of $D_{2 h}$ symmetry. The mean bond length for the four equivalent $\mathrm{Mn}-\mathrm{Br}$ bonds is $2.526 \pm 0.005 \AA$.

Introduction

Although a large number of metal carbonyl halides are known, to date the structures of only two of them, $\left[\mathrm{ClRh}(\mathrm{CO})_{2}\right]_{2}$ (Dahl, Martell \& Wampler, 1961) and $\mathrm{I}_{2} \mathrm{Ru}(\mathrm{CO})_{4}$ (Dahl \& Wampler, 1962), have been determined by X-ray diffraction. This paper reports the results of a three-dimensional X-ray investigation of a third such compound, $\left[\mathrm{BrMn}(\mathrm{CO})_{4}\right]_{2}$, which is a
representative member of the tetracarbonyl halides of the group VII transition metals.

The dimeric character of these compounds was first determined (Abel, Hargreaves \& Wilkinson, 1958) from molecular weight measurements of the rhenium carbonyl halides. A structure of $D_{2 h}$ symmetry involving the connection of two octahedra at an edge with bridging halogen atoms was suggested as a most reasonable configuration. Other structures with

[^0]: * The incident power is normalized to unity for convenience.

