Secondary Extinction Corrections for Cylindrical Crystals*

BY WALTER C. HAMILTON

Chemistry Department, Brookhaven National Laboratory, Upton, Long Island, New York, U.S.A.

(Received 13 August 1962)

A computer program for calculating secondary extinction corrections for crystals of arbitrary polyhedral shape is briefly described, and tables of the corrections for equatorial reflections from cylindrical crystals are presented.

and

Introduction

The author in a previous publication (Hamilton, 1957, hereinafter referred to as I) has presented a formalism for calculating secondary extinction corrections for crystals of arbitrary shape. The corrections for cylindrical crystals were presented in I in the form of curves of I_o/I_c versus σD for three scattering angles. The calculation of the points on these curves was carried out on a desk computer using a rather large grid size for the required two-dimensional numerical integration.

In the intervening four years, a fast computer program for the IBM 704/7090 has been developed for the calculation of absorption and secondary extinction corrections for convex polyhedral crystals of arbitrary shape. The availability of this program, which makes possible a much more accurate integration, and the requests that the author has received for tables of values for cylindrical crystals, have made it seem desirable to calculate and publish such a table.

Method

The general method used is that of \mathbf{I} , and the same notation will be used. A rectangular rather than a Gaussian mosaic spread distribution function has been used; the adequacy of this model has been demonstrated by its successful use in a number of problems in these laboratories.

If the power in the incident beam with direction n is denoted by P_0 and that in the diffracted beam with direction m by $P_{\rm H}$, the following pair of differential equations apply:

$$\partial P_{\rm H}/\partial m = \gamma_{11}P_{\rm H} + \gamma_{12}P_{\rm O} \tag{1a}$$

$$\partial P_{\rm O}/\partial n = \gamma_{21} P_{\rm O} + \gamma_{22} P_{\rm H} , \qquad (1b)$$

where the γ 's are constants defined below. Rather than using the difference equations I-4 as an approximation to equations (1), a modified Euler integration scheme is used instead. In one dimension, the Euler formula is

$$f(x + \Delta x) = f(x) + (\Delta x/2) [f'(x) + f'(x + \Delta x)].$$
(2)

In two dimensions, we construct a grid of points spanning the cross-section of the crystal. Let us denote the points (m, n), $(m, n + \Delta n)$, $(m + \Delta m, n)$, and $(m + \Delta m, n + \Delta n)$ by (00), (01), (10), and (11). If we choose $\Delta n = \Delta m$ and define $C_{ij} = \gamma_{ij} \Delta n/2$, we may combine (2) and (1) to obtain

$$P_{\rm H}(11) = P_{\rm H}(01) + C_{11}[P_{\rm H}(01) + P_{\rm H}(11)] + C_{12}[P_{\rm O}(01) + P_{\rm O}(11)]$$

$$P_{\rm O}(11) = P_{\rm O}(10) + C_{21}[P_{\rm O}(10) + P_{\rm O}(11)] + C_{22}[P_{\rm H}(10) + P_{\rm H}(11)]. \quad (3)$$

Since the boundary conditions for equations (1) are

 $P_0 = 1^*$ at the incident boundary

 $P_{\rm H} = 0$ at the boundary opposite to the direction of emergence of the diffracted beam, we must consider four types of boundary point in the application of the equations (3):

Type I: The point (11) is a boundary point with respect to both $P_{\rm H}$ and $P_{\rm O}$. For this case

$$P_{\rm O}(11) = 1$$

 $P_{\rm H}(11) = 0$. (4)

Type II: The point is a boundary point with respect to $P_{\rm H}$ but not to $P_{\rm O}$. The equations become

$$P_{\rm O}(11) = \frac{C_{22}}{1 - C_{21}} P_{\rm H}(01) + \left(\frac{1 + C_{21}}{1 - C_{21}}\right) P_{\rm O}(10)$$
$$P_{\rm H}(11) = 0.$$
(5)

Type III: The point is a boundary point with respect to P_0 but not to $P_{\rm H}$. The equations become

 $P_{0}(11) = 1$

$$P_{\rm H}(11) = \frac{1 + C_{11}}{1 - C_{11}} P_{\rm H}(01) + \frac{C_{12}}{1 - C_{11}} [1 + P_{\rm O}(01)].$$
(6)

 $Type \ IV$: The point is not subject to the boundary conditions. The equations become on rearrangement

^{*} Research performed under the auspices of the U.S. Atomic Energy Commission.

^{*} The incident power is normalized to unity for convenience.

Table 1. Reciprocal pure secondary extinction corrections for cylinder: $1/E_s = I_c/I_o$

		-	-	•			,	, -	
$\sigma D \langle 2\theta^{\circ} \rangle$	0°	$22 \cdot 5^{\circ}$	4 5°	67.5°	90°	$112 \cdot 5^{\circ}$	135°	157.5°	180°
0.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
0.2	1.178	1.178	1.177	1.176	1.173	1.172	1.170	1.169	1.169
0.4	1.374	1.372	1.368	1.362	1.354	1.346	1.341	1.337	1.336
0.6	1.585	1.581	1.571	1.556	1.538	1.523	1.511	1.504	1.501
0.8	1.811	1.804	1.785	1.757	1.727	1.701	1.682	1.670	1.666
1.0	2.050	2.038	2.007	1.963	1.917	1.879	1.852	1.836	1.830
1.2	2.300	2.283	$2 \cdot 236$	$2 \cdot 173$	2.108	2.057	2.022	2.001	1.993
1.4	2.561	2.536	2.471	2.385	$2 \cdot 301$	2.236	$2 \cdot 192$	$2 \cdot 165$	2.156
1.6	2.830	2.796	2.710	2.599	$2 \cdot 493$	2.412	2.362	2.330	2.318
1.8	3.106	3.062	2.952	2.814	2.686	2.593	2.531	$2 \cdot 493$	2.480
$2 \cdot 0$	3.389	3.333	3.196	3.030	2.880	2.772	2.700	2.657	2.641
$2 \cdot 2$	3.677	3.608	$3 \cdot 443$	3.247	3.073	2.951	2.869	2.820	2.802
$2 \cdot 4$	3.968	3.886	3.690	3.463	3.266	3.129	3.038	2.983	2.963
$2 \cdot 6$	4.264	4.167	3.939	3.680	$3 \cdot 459$	3.308	$3 \cdot 207$	3.146	3.123
2.8	4.563	4.449	4 ·188	3.891	3.653	3.486	3.376	3.309	3.284
3 ·0	4.863	4.733	4.437	4.113	3.846	3.664	3.545	3.471	3.444
4 ·0	6.393	6.163	5.684	5.196	4.812	4.556	4.387	4.283	4.143
6.0	9.490	9.037	8.172	7.358	6.741	6.335	6.070	5.900	5.832
8.0	12.61	11.90	10.65	9.515	8.667	8.110	7.752	7.516	7.416
10.0	15.75	14.77	13.12	11.67	10.59	9.883	9.432	9.132	8.996
12.0	18.88	17.62	15.59	$13 \cdot 82$	12.51	11.65	11.11	10.75	10.58
14.0	22.02	20.47	18.06	15.97	14.43	13.42	12.79	12.37	12.15
16.0	$25 \cdot 16$	$23 \cdot 32$	20.52	18.12	16.35	15.19	14.46	13.98	13.73
18.0	28.30	26.17	22.98	20.26	18.27	16.95	16.14	15.60	15.30
20.0	31.44	29.01	$25 \cdot 44$	$22 \cdot 41$	20.18	18.72	17.81	17.22	16.88
$22 \cdot 0$	34.58	31.86	27.89	24.55	$22 \cdot 10$	20.48	19.48	18.84	18.45
24.0	37.71	34.70	30.35	26.69	24.01	22.24	$21 \cdot 15$	20.47	20.03
26.0	40·86	37.54	$32 \cdot 80$	28.84	25.92	24.00	$22 \cdot 82$	22.09	$21 \cdot 60$
28.0	44.00	40.38	35.25	30.98	27.83	25.76	$24 \cdot 49$	23.71	$23 \cdot 17$
30.0	47.14	$43 \cdot 22$	37.70	$33 \cdot 12$	29.74	27.52	$26 \cdot 16$	25.33	24.75
Limiting value	$\frac{1}{2}\pi\sigma D$	$1.42 \sigma D$	$1.23 \sigma D$	$1.07 \sigma D$	$0.96 \sigma D$	$0.88 \sigma D$	$0.84 \sigma D$	$0.79 \sigma D$	$\frac{1}{2}\pi\sigma D$

$$\begin{aligned} P_{\rm O}(11) &= (1/K) [P_{\rm H}(01)(1+C_{11})C_{22} + P_{\rm O}(01)C_{12}C_{22} \\ &+ P_{\rm H}(10)C_{22}(1-C_{11}) + P_{\rm O}(10)(1+C_{21})(1-C_{11})] \\ P_{\rm H}(11) &= (1/K) [P_{\rm H}(01)(1+C_{11})(1-C_{21}) \\ &+ P_{\rm O}(01)(1-C_{21})C_{12} + P_{\rm H}(10)C_{12}C_{22} \\ &+ P_{\rm O}(10)(1+C_{21})C_{12}] \end{aligned} \tag{7}$$

 \mathbf{with}

$$K = (1 - C_{11})(1 - C_{21}) - C_{12}C_{22}$$
.

If the linear absorption coefficient is denoted by μ and the reflectivity by σ (see I), we have, for the case of non-zero extinction.

$$C_{11} = C_{21} = -(\mu + \sigma) \Delta n/2$$

$$C_{12} = C_{22} = \sigma \Delta n/2 .$$
(8)

If extinction is considered to be negligible, and we are interested in calculating a pure absorption coefficient, we have

$$C_{11} = C_{21} = -\mu \Delta n/2$$

$$C_{12} = \sigma \Delta n/2$$

$$C_{22} = 0.$$
(9)

These equations are used in the program to integrate along lines of constant n, and the total diffracted power is integrated over the exit boundary:

$$P_{\rm H}(T) = \sum_{n=n_{\rm min}}^{n_{\rm max}} P_{\rm H}[m_{\rm max}(n)] \,. \tag{10}$$

To obtain the absorption-extinction correction, E_{sa} we divide $P_{\rm H}(T)$ by the ideal value for an extinction and absorption free crystal, namely

$$A = \sigma \varDelta n \sum_{n=n_{\min}}^{n_{\max}} [m_{\max}(n) - m_{\min}(n)]. \qquad (11)$$

 $0.79 \sigma D$

 $\frac{1}{4}\pi\sigma D$

[In (10) and (11), n and m refer to the integral indices of the grid points.] Thus

$$E_{sa} \equiv I_o/I_c = P_{\mathrm{H}}(T)/A$$
 .

For the crystal of general shape, the program performs the integration over slices parallel to the mn plane. sums $P_{\rm H}(T)$ and A for the various planes and then divides to obtain E_{sa} . For equatorial reflections from a crystal with axial symmetry, in particular a cylindrical crystal, only one slice is necessary.

Calculations for the table

The circular cross-section of the cylinder was approximated by a 30-gon of the same area as a circle with diameter D. The grid size for the integration was taken to be D/120, for $45^{\circ} < 2\theta < 135^{\circ}$ and D/80 for $2\theta = 22 \cdot 5^{\circ}$ and $157 \cdot 5^{\circ}$. The values for $2\theta = 0^{\circ}$ and 180° can be calculated by simpler methods than numerical integration. A series expansion was used to evaluate the integral in I-15 for $2\theta = 0^{\circ}$ (equation I-18 should have a 2 in front of the summation sign); the following formulae were used for $2\theta = 180^{\circ}$:

$$a = \sigma D < 1, \ E_s = \frac{4}{\pi a} - \frac{2}{a^2} + \frac{8}{\pi a^2 (1 - a^2)^{1/2}} \tan^{-1} \left(\frac{1 - a}{1 + a}\right)$$

$$\begin{aligned} a &= D = 1, \ E_s = \frac{8}{\pi} - 2 \\ a &= \sigma D > 1, \ E_s = \frac{4}{\pi a} - \frac{2}{a^2} \\ &+ \frac{4}{\pi a^2 (a^2 - 1)^{1/2}} \log \frac{(1 + a)^{1/2} + (a - 1)^{1/2}}{(1 + a)^{1/2} - (a - 1)^{1/2}} \end{aligned}$$

The results are accumulated in Table 1. The quantity tabulated is $1/E_s$, *i.e.* I_c/I_o . To obtain an estimate of the accuracy of these numbers, calculations were made of a few pure absorption corrections, with the results compared in Table 2 with values from Vol. II of the *International Tables for X-ray Crystallography* (1959). For $\mu D=3$, the errors are no more than a few tenths of 1%. These increase to 2-3% at $\mu D=30$. This should be a tolerable error for any practical work where extinction or absorption is this severe.

Table 1 is extended to values of σD where the reflected intensity is becoming independent of the

 Table 2. Comparison of calculated pure absorption

 corrections with those tabulated in the International

 Tables for X-ray Crustallography

μR	θ	Calc.	Table	Relative error
1.5	15	9.843	9.88	0.0037
	25	8.766	8.79	0.0027
	35	7.668	7.68	0.0015
	45	6.722	6.74	0.0027
	55	6.000	6.00	
	65	$5 \cdot 453$	5.45	0.0006
	75	5.083	5.08	0.0006
15.0	15	711.5	731	0.027
	25	$321 \cdot 3$	313	0.027
	35	179.9	176	0.022
	45	117.6	115	0.023
	55	84.95	82.7	0.027
	65	65.86	$64 \cdot 8$	0.016
	75	54.43	54·1	0.006

structure factor, and the limiting values of $1/E_s$ are also included in the table. The limiting values for $2\theta = 0^{\circ}$ and $2\theta = 180^{\circ}$ are exact; the others were obtained by extrapolation.

References

HAMILTON, W. C. (1957). Acta Cryst. 10, 629. International Tables for X-ray Crystallography (1959). Vol. II. Birmingham: The Kynoch Press.

Acta Cryst. (1963). 16, 611

Crystal Structure of [BrMn(CO)₄]₂

BY LAWRENCE F. DAHL AND CHIN-HSUAN WEI

Department of Chemistry, University of Wisconsin, Madison 6, Wisconsin, U.S.A.

(Received 18 September 1962)

A^{*}three-dimensional structural analysis of $[BrMn(CO)_4]_2$, a typical member of the group VII metal tetracarbonyl halides, has been carried out. Crystals of $[BrMn(CO)_4]_2$ possess space group symmetry $P2_1/c$ and contain four dimeric molecules in a monoclinic unit cell of dimensions

 $a = 9.57 \pm 0.01$, $b = 11.79 \pm 0.02$, $c = 12.91 \pm 0.02$ Å, $\beta = 109^{\circ} 30' \pm 10'$.

Isotropic least-squares refinement of all twenty atoms has yielded final discrepancy factors of $R_1 = 10.0\%$ and $R_2 = 10.9\%$. The structure consists of discrete dimeric molecules formed by two octahedra joined at a common edge with bridging bromines equally shared between the manganese atoms. Within experimental error each molecular unit is of D_{2k} symmetry. The mean bond length for the four equivalent Mn-Br bonds is 2.526 ± 0.005 Å.

Introduction

Although a large number of metal carbonyl halides are known, to date the structures of only two of them, $[ClRh(CO)_2]_2$ (Dahl, Martell & Wampler, 1961) and $I_2Ru(CO)_4$ (Dahl & Wampler, 1962), have been determined by X-ray diffraction. This paper reports the results of a three-dimensional X-ray investigation of a third such compound, $[BrMn(CO)_4]_2$, which is a

A C 16 - 40

representative member of the tetracarbonyl halides of the group VII transition metals.

The dimeric character of these compounds was first determined (Abel, Hargreaves & Wilkinson, 1958) from molecular weight measurements of the rhenium carbonyl halides. A structure of D_{2h} symmetry involving the connection of two octahedra at an edge with bridging halogen atoms was suggested as a most reasonable configuration. Other structures with