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Secondary Extinction Corrections for Cylindrical Crystals¥
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A computer program for calculating secondary extinction corrections for crystals of arbitrary poly-
hedral shape is briefly described, and tables of the corrections for equatorial reflections from

cylindrical crystals are presented.

Introduction

The author in a previous publication (Hamilton, 1957,
hereinafter referred to as I) has presented a formalism
for calculating secondary extinction corrections for
crystals of arbitrary shape. The corrections for
cylindrical crystals were presented in I in the form
of curves of I,/ versus gD for three scattering angles.
The calculation of the points on these curves was
carried out on a desk computer using a rather large
grid size for the required two-dimensional numerical
integration.

In the intervening four years, a fast computer
program for the IBM 704/7090 has been developed
for the calculation of absorption and secondary
extinction corrections for convex polyhedral crystals
of arbitrary shape. The availability of this program,
which makes possible a much more accurate integra-
tion, and the requests that the author has received
for tables of values for cylindrical crystals, have made
it seem desirable to calculate and publish such a table.

Method

The general method used is that of I, and the same
notation will be used. A rectangular rather than a
Gaussian mosaic spread distribution function has
been used; the adequacy of this model has been
demonstrated by its successful use in a number of
problems in these laboratories.

If the power in the incident beam with direction n
is denoted by Po and that in the diffracted beam with
direction m by Pu, the following pair of differential
equations apply:

OPg/om = yuPr+ y12Po (la)

0Po[on = yuPo+ yeePu, (16)

where the y’s are constants defined below. Rather
than using the difference equations I-4 as an approx-
imation to equations (1), a modified Euler integration
scheme is used instead. In one dimension, the Euler
formula is

* Research performed under the auspices of the U.S.
Atomic Energy Commission.

[+ Adz)=f(2)+(42/2)[f" (@) +f" (z+ d2)] . (2)

In two dimensions, we construct a grid of points
spanning the cross-section of the crystal. Let us
denote the points (m, n), (m,n+ An), (m+ Am, n),
and (m+Adm, n+ An) by (00), (01), (10), and (11).
If we choose An=Am and define Ci=yydn/2, we
may combine (2) and (1) to obtain

Pr(11)=Pu(01) + Cuu[ Pu(01) + Pg(11)]
+C12[Po(01)+ Po (11)]
Po(11)=Po(10)+ Ca1[Po (10) + Po (11)]
+ Coo[ Pu(10)+ Pu(11)]. (3)

Since the boundary conditions for equations (1) are

Po = 1* at the incident boundary
and

Pg =0 at the boundary opposite to the
direction of emergence of the diffracted beam, we
must consider four types of boundary point in the
application of the equations (3):

Type I: The point (11) is a boundary point with
respect to both Py and Po. For this case

Po(11) = 1
Py(ll) = 0. 4)

Type 11: The point is a boundary point with respect
to Pa but not to Po. The equations become

1+C
Po(11) = ;=2 Pr(01) + (T—E‘z

Py(ll) =0. (5)

Ca2

)Po(lo)

Type III: The point is a boundary point with
respect to Pp but not to Pg. The equations become
Po(11) =1

1+C c
Pa(ll) = 1—J_rc_i Pa(01) + 1~ 4 [1+ PoOL)] . (6)

Type IV : The point is not subject to the boundary
conditions. The equations become on rearrangement

* The incident power is normalized to unity for convenience.
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Table 1. Reciprocal pure secondary extinction corrections for cylinder: 1|Es=1I./1,

26° 0° 22-5° 45° 67-5°
oD
0-0 1-000 1-000 1-000 1-000
0-2 1-178 1-178 1-177 1-176
0-4 1-374 1-372 1-368 1-362
0-6 1-585 1-581 1-571 1-556
0-8 1-811 1-804 1-785 1-757
1- 2-050 2-038 2:007 1-963
1-2 2-300 2-283 2-236 2:173
1-4 2:561 2-536 2-471 2-385
1-6 2-830 2-796 2-710 2-599
1-8 3-106 3-062 2:952 2-814
2-0 3-389 3-333 3-196 3-030
2-2 3-677 3-608 3-443 3-247
2-4 3-968 3-886 3-690 3463
2-6 4-264 4-167 3-939 3:680
2-8 4-563 4449 4-188 3-897
30 4-863 4-733 4-437 4113
4-0 6-393 6-163 5684 5196
6-0 9-490 9-037 8172 7-358
80 12-61 11-90 10-65 9-515
10-0 1575 14-77 13-12 11-67
12-0 18-88 17-62 15-59 13:82
14-0 22-02 20-47 18-06 15-97
16-0 25-16 23-32 20-52 18-12
18-0 28-30 26-17 22-98 20-26
20-0 31-44 29-01 25-44 22-41
22-0 34-58 31-86 27-89 24-55
24-0 37-71 3470 30-35 26-69
26-0 40-86 37-54 32-80 28-84
28-0 44-00 40-38 3525 30-98
30-0 47-14 43-22 37-70 33-12
Limiting value 3imoD 1-42¢D 1-230D 1-07¢D

Po 11)= I/K [PH Ol)(l+011)022+Po(01)012022
+ Pr(10)Ca2(1 — Cu1) + Po(10)(1 4 Car)(1 — C11)]
Py(11)=(1/K)[Pa(01)(1+ Cu)(1 —C2)
+ Po(01)(1 —C21)Ci2+ Pr(10)C12Cs:e
+ Po(10)(1 4 C21)Ciz] (7)
with

=(1=Cu)(1—Co1)—C12C% .

If the linear absorption coefficient is denoted by u
and the reflectivity by o (see I), we have, for the
case of non-zero extinction,

Cu = Ca = —(u+0)4n/2
Cre = Co2 = 04n/2. (8)
If extinction is considered to be negligible, and we

are interested in caleulating a pure absorption co-
efficient, we have

Cu=0Cy = —yAn/2
Ciz = odn/2
Cae=0. 9)

These equations are used in the program to integrate
along lines of constant », and the total diffracted
power is integrated over the exit boundary:

"3’%" Pu [mmax (n)_l .

n=nmjn

Pu(T) = (10)

90° 112-5° 135° 157-5° 180°
1-000 1-000 1-000 1-000 1-000
1-173 1-172 1-170 1-169 1-169
1-354 1-346 1-341 1-337 1-336
1:538 1-523 1-511 1-504 1-501
1-727 1:701 1-682 1-670 1-666
1-917 1-879 1-852 1-836 1-830
2-108 2-057 2-022 2-001 1-993
2-301 2-236 2:192 2-165 2-156
2-493 2-415 2:362 2-330 2:318
2-686 2-593 2:531 2-493 2-480
2-880 2-772 2-700 2-657 2-641
3-073 2951 2-869 2-820 2-802
3-266 3-129 3-038 2-983 2-963
3-459 3:308 3-207 3-146 3-123
3653 3-486 3-376 3-309 3-284
3-846 3-664 3-545 3-471 3-444
4-812 4-556 4-387 4-283 4-143
6-741 6-335 6-070 5-900 5-832
8-667 8110 7752 7-516 7-416
10-59 9-883 9-432 9-132 8-996
12-51 11-65 11-11 10-75 10-58
14-43 13-42 12-79 12-37 12-15
16-35 15-19 14-46 13-98 13-73
18-27 16-95 16-14 15-60 15-30
20-18 18-72 17-81 17-22 16-88
22-10 20-48 19-48 18-84 18-45
24-01 22-24 21-15 20-47 20-03
25-92 24-00 22-82 22-09 21-60
27-83 25-76 24-49 23-71 23-17
29-74 27-52 26-16 25-33 24-75
0-96 0D 0-880D 0-840D 0-790D {noD

To obtain the absorption-extinction correction, Eg,
we divide Pg(T) by the ideal value for an extinction
and absorption free crystal, namely

7max
A= O'An 2 [Mmax(n)_mmin(n)] .
n=nmin
[In (10) and (11), » and m refer to the integral indices
of the grid points.] Thus

Eso=1,]I, = Pu(T)/A

For the crystal of general shape, the program performs
the integration over slices parallel to the mn plane,
sums Pu(7T) and A4 for the various planes and then
divides to obtain . For equatorial reflections from
a crystal with axial symmetry, in particular a cylin-
drical erystal, only one slice is necessary.

(11)

Calculations for the table

The circular eross-section of the cylinder was approx-
imated by a 30-gon of the same area as a circle with
diameter D. The grid size for the integration was
taken to be D/120, for 45°<26<135° and D/80 for
26 =22-5° and 157-5°. The values for 260 =0° and 180°
can be calculated by simpler methods than numerical
integration. A series expansion was used to evaluate
the integral in I-15 for 2§=0° (equation I1-18 should
have a 2 in front of the summation sign); the following
formulae were used for 26=180°:
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a=o0D<]l, E’s=i—-E
e a?
8 L(1—a 12
+Jza?(l——a?)mtan (1+a>
a=D=1, Es=§—2
4
2
a=ocoD>1, Es=—4—-——
e a?
4 (14a)24(a—1)¥?

t @ =1 % (15 a)yP— (a— 1"

The results are accumulated in Table 1. The
quantity tabulated is 1/Es, i.e. I/I,. To obtain an
estimate of the accuracy of these numbers, calcula-
tions were made of a few pure absorption corrections,
with the results compared in Table 2 with values
from Vol.II of the Inlernational Tables for X-ray
Crystallography (1959). For uD=3, the errors are no
more than a few tenths of 19. These increase to
2-3% at uD=30. This should be a tolerable error for
any practical work where extinction or absorption
is this severe.

Table 1 is extended to values of gD where the
reflected intensity is becoming independent of the
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Table 2. Comparison of calculated pure absorption
corrections with those tabulated in the International
Tables for X-ray Crystallography

UR 0 Cale. Table Relative error
1-5 15 9-843 9-88 0-0037
25 8-766 8-79 0-0027
35 7-668 7-68 0-0015
45 6-722 6-74 0-0027
55 6-000 6-00 —
65 5-453 5-45 0-0006
75 5-083 5-08 0-0006
15-0 15 711-5 731 0-027
25 321-3 313 0-027
35 179-9 176 0-022
45 117-6 115 0-023
55 84-95 82-7 0-027
65 65-86 64-8 0:016
75 54-43 54-1 0-:006

structure factor, and the limiting values of 1/E; are
also included in the table. The limiting values for
20=0° and 20=180° are exact; the others were
obtained by extrapolation.
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A"three-dimensional structural analysis of [BrMn(CO),],, a typical member of the group VII metal
tetracarbonyl halides, has been carried out. Crystals of [BrMn(CO),], possess space group symmetry
P2,/c and contain four dimeric molecules in a monoclinic unit cell of dimensions

a=957+0:01, b=11.79 +0-02, ¢=12-91+0-02 A, f=109° 30" +10".

Isotropic least-squares refinement of all twenty atoms has yielded final discrepancy factors of
R,=10-0% and R,=10-9%. The structure consists of discrete dimeric molecules formed by two
octahedra joined at a common edge with bridging bromines equally shared between the manganese
atoms. Within experimental error each molecular unit is of Dy, symmetry. The mean bond length
for the four equivalent Mn—Br bonds is 2:526 £ 0-:005 A.

Introduction

Although a large number of metal carbonyl halides
are known, to date the structures of only two of them,
[CIRh(CO)z]z (Dahl, Martell & Wampler, 1961) and
L.Ru(CO)s (Dahl & Wampler, 1962), have been deter-
mined by X-ray diffraction. This paper reports the
results of a three-dimensional X-ray investigation of
a third such compound, [BrMn(CO)s]e, which is a
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representative member of the tetracarbonyl halides
of the group VII transition metals.

The dimeric character of these compounds was
first determined (Abel, Hargreaves & Wilkinson, 1958)
from molecular weight measurements of the rhenium
carbonyl halides. A structure of Da; symmetry
involving the connection of two octahedra at an
edge with bridging halogen atoms was suggested as
a most reasonable configuration. Other structures with



